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Abstract 

The current study used simulated data to investigate the properties of a newly proposed method 

(Yao’s rater model) for modeling rater severity and its distribution under different conditions. Our 

study examined the effects of rater severity, distributions of rater severity, the difference between 

item response theory (IRT) models with rater effect and without rater effect, and the difference 

between the precision of the ability estimates for tests composed of only constructed-response 

(CR) items and for tests composed of multiple-choice (MC) and CR items combined. Our results 

indicate that rater severity and its distribution can increase the bias of examinees’ ability 

estimates and lower test reliability. Moreover, using an IRT model with rater effects can 

substantially increase the precision in the examinees’ ability estimates, especially when the test 

was composed of only CR items. We also compared Yao’s rater model with Muraki’s rater effect 

model (1993) in terms of ability estimation accuracy and rater parameter recovery. The 

estimation results from Yao’s rater model using Markov chain Monte Carlo (MCMC) were 

better than those from Muraki’s rater effect model using marginal maximum likelihood. 

Key words: IRT-based rater model, IRT, distributions of rater severity, MCMC 



 

ii 

Acknowledgments 

The authors are grateful to Alina von Davier, Shelby Haberman, and Don Powers for their advice 

during the review of the paper. The authors also thank Kim Fryer and Ruth Greenwood for their 

editorial comments and suggestions on earlier versions of the manuscript. The opinions 

expressed in this paper are those of the authors and not necessarily of ETS, the U.S. Department 

of Defense, or the United States government.



 

1 

Constructed-response (CR) questions have been increasingly used in standardized 

assessments. CR items may include open-ended questions, structured performance tasks, and 

other kinds of free-response assessments that require the examinee to display certain skills and 

knowledge. Many testing programs use CR items in addition to multiple-choice (MC) items. 

However, there is strong evidence that human raters differ in their overall severity and in their 

evaluations of specific responses (Longford, 1995). Rater severity effects have been included in 

some measurement models and studied by DeCarlo, Kim, and Johnson (2011); Donoghue, 

McClellan, and Gladkova (2006); Engelhard (2002); Longford (1995); Patz, Junker, Johnson, 

and Mariano (2002); Wilson and Hoskens (2001); and Wolfe and Myford (1997). The results 

from their studies indicate that the bias or systematic error may be caused by varying degrees of 

rater leniency or strictness. If rater severity effects are not included in the measurement model, 

then the overall reliability will decrease (Donoghue et al., 2006).  

There are a few research studies incorporating rater severity effects into the item response 

theory (IRT) models (Donoghue et al., 2006; Engelhard, 1996; Patz, 1997; Patz & Junker, 1999; 

Wilson & Hoskens, 2001). The FACETS model (Linacre, 1991) is the IRT model that allows for 

the estimation of differences in severity between raters, and thus eliminates rater bias from the 

estimates of the items and examinees’ ability. However, FACETS has obvious problems with 

asymptotic bias, due to its use of the joint (unconditional) maximum likelihood method: “Its 

weaknesses are degree of statistical inconsistency under artificial conditions, and statistical bias 

with some very small data sets and certain idiosyncratic data configurations” (de Jong & Linacre, 

1993, pp. 296–297). Although there are possible mitigations of the problem under certain 

scenarios involving many examinees, prompts, and raters by use of techniques proposed by 

Haberman (1977), the solution to the problem of joint estimation generally involves the use of 

marginal maximum likelihood or conditional maximum likelihood. Other IRT models are also 

available for modeling rater effects, such as Muraki’s rater effect models (1993), the hierarchical 

rater model (HRM model; Patz, 1997), and the rater bundle model (Wilson & Hoskens, 2001). 

Patz’s HRM model is a recent development that “accounts for marginal dependence between 

ratings of the same examinee’s work” (Patz, 1997, p. 343), and it is more feasible for large 

numbers of ratings per item, where the FACETS model assumed independent relationship 

between such ratings. Wilson and Hoskens’ rater bundle model also explicitly models the 
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dependence between multiple readings of the same examinee’s work. However, the rater bundle 

model only works well for modeling a few specific dependencies. 

In addition to rater severity effects, the distributions of rater severity (e.g., the manner in 

which raters are assigned to essays and examinees) can impact the accuracy of examinees’ ability 

estimation. So far, only a few research studies have been conducted to investigate the effects of 

distributions of rater severity patterns on examinees’ ability estimation (Hombo, Donoghue, & 

Thayer, 2001; Sykes, Ito, & Wang, 2008). Sykes et al. (2008) concluded that “rater bias on an 

examinee’s set of responses may be minimized with the use of multiple readers though fewer 

than the number of items” (p. 47). Hombo et al. (2001) investigated different scoring designs and 

their impact on the accuracy of examinee ability estimation. 

As a result of the new technology, the scoring and distributions of rater severity have 

changed dramatically for most projects; for instance, some raters can sign up for rating 

examinees’ responses at home by using a central scoring system. This is very different from the 

traditional scoring process model, where each rater is assigned equal number of papers that are 

randomly selected and all the raters stay in the same scoring room. Some biased raters (e.g., 

those judged to be harsh or lenient) or those who tend to use middle scores may sign up more 

examinees for a particular assessment than other raters do, because they have time available, 

which may result in a nontrivial rater-bias effect. Such rater effects may have a serious impact. 

Raters often demonstrate consistent individual differences in their ratings, although sufficient 

training might reduce rater variability; incorporating rater effects into measurement models can 

increase the measurement precision if raters exhibit acceptable model-data fit. However, almost 

all testing companies choose to use IRT models with no rater severity parameter, due to the lack 

of a well-fitted rater model and software, as well as the lack of related research regarding rater 

severity effects and the distributions of rater severity. 

The purpose of this study is to investigate the properties of a newly proposed method, Yao’s 

rater model, for modeling rater severity under different conditions. Yao’s rater model is an 

extension and improvement of the current existing models and software that implement Muraki’s 

rater effect model and Linacre’s Rasch-based rater model (1989). In the current study, we tested 

Yao’s IRT-based rater model that handles both MC and CR items and uses simulated data to 

explore parameter recovery and rater distribution issues. We also used simulated data on CR- 
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only items and compared Yao’s rater model with Muraki’s rater effect model in terms of 

examinees’ ability estimation accuracy and rater parameter recovery. 

In the beginning of this paper, we provide an introduction, research purposes, and 

methods sections. In the methods section, we introduce two IRT-based rater models first. Then 

we describe the simulated data and four rater distribution patterns used and present the 

evaluation criteria for the rater model comparisons. Finally, we present results, conclusions, and 

discussions.  

Research Purpose 

The purpose of this research is:  

1.   to explore parameter recovery (raters, items, and examinees) using Yao’s rater model 

(2012) for CR-only and MC plus CR combined tests and to compare Yao’s rater 

model without rater parameters with Yao’s model incorporating rater parameters; 

2.   to study the effects of four different rater distributions and rater severity on 

examinees’ ability estimates, using a new IRT-based rater model (Yao, 2012); and 

3.   to compare two rater models, Muraki’s rater effect model (1993) and Yao’s rater 

model (2012), in terms of examinees’ ability estimation. 

Methods 

Muraki’s Rater Effect Model 

Muraki’s rater effect model (1993) in PARSCALE (Muraki & Bock, 1999) generalizes 

the FACETS model by adding a discrimination parameter (a-parameter) to the item. The 

estimation method used is the estimation and maximization (EM) algorithm for solving marginal 

likelihood equations. Muraki’s rater effect model is expressed as follows (Barr & Raju, 2001): 
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where x = 0,1, …, mj and k = 0, 1, …, mj. jkP  is the probability of rater r assigning examinee i to 

category k over category (k-1) in a polytomous item j. D is constant. iθ is an examinee’s (i’s) 

proficiency, and aj and bjf are the item parameters for item j. In the case of a polytomous item 
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with m categories there will be one a parameter and (m-1) b parameters (Muraki & Bock, 1999). 

The tendency of the rater toward leniency or severity is separately accounted for in Muraki’s 

rater effect model, denoted by rρ . The rater effect is modeled as constant across items. 

Yao’s Rater Model 

The rater model developed by Yao (2012) is an IRT-based rater model. It can incorporate 

multiple parameters (item difficulty, discrimination, and rater) and one latent trait or multiple 

latent traits. Additionally it can handle both MC and CR items simultaneously. Yao’s rater model 

was based on the Markov chain Monte Carlo estimation in BMIRTII software (Yao, 2010), using 

the Metropolis-Hastings algorithm. The procedure obtains samples from the posterior 

distribution—a product of the likelihood function and the priors. Because the Markov chain is 

not stable, initial samples often may not be valid. For each of the to-be-estimated parameters 

(raters, items, and abilities), the average of the Markov chain Monte Carlo sampling after the 

chain has reached its stationary or after the burn-in is the final estimate for that parameter.  

Markov chain Monte Carlo methods have been widely used in every aspect of scientific 

inquiry, such as computational physics, biology, and linguistics. Using Markov chain Monte 

Carlo in Yao’s rater model, we have the flexibility to extend the existing raters models (e.g., 

FACETS; PARSCALE) from one latent trait to multiple latent traits, and Markov chain Monte 

Carlo can handle both MC and CR items. Most rater models from the literature only handle tests 

that are composed of CR items. Since most tests are composed of both MC and CR items, we 

think it is important to include MC items along with CR items to compare with CR-only tests 

when estimating examinees’ ability. Even though Yao’s rater model can be multidimensional, 

only the unidimensional model is described here, as this study only used the unidimensional 

model. 

Suppose there are N examinees, J items, and M raters with a continuous parameter Rr (a 

severity/leniency parameter) in the range of (−∞,+∞), where r = 1, …, M. For a polytomously 

scored item j, j = 1, …, J, by rater r, the generalized two-parameter partial credit model provides 

the probability of a response k − 1 for an examinee with ability θi: 
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where Xijr = 0, …,Kj − 1 is the score of examinee i on item j. βj is the discrimination, βδkj for k = 

1, 2, …, Kj are the threshold parameters, βδ1j = 0, and Kj is the number of response categories for 

the jth item. The discrimination parameters for the jth item are βj = (βj , βδ2j , …, βδKjj). It is 

clear that 

1

1 ( 1)( )

1

1 ,m
j i r jtj t

ij r m RK
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P
e δβ θ β
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−
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where k = 2, …, Kj. The rater parameters are R


 = (R1, …, RM). 

Yao’s rater model is the same as the regular generalized one-parameter partial credit 

model, if βj = 1 and Rr = 0. If Rr = 0, Yao’s rater model is the same as the regular generalized 

two-parameter partial credit model. The item discrimination parameter βj is the same as Da in 

equation (1) and the threshold parameters are the same as that in equation (1) times Da. In this 

study, we used same scale (D = 1, a = 1) for both Yao’s rater model and Muraki’s rater effect 

model. 

For MC items in BMIRTII, the models are the three-parameter logistic model. The 

multidimensional extension of the generalized two-parameter partial-credit model was described 

in Yao and Schwarz (2006). The multidimensional versions of the rater model are a similar 

extension of equation (2). When Rr = 0 for all raters, the multidimensional rater model is the 

same as the multidimensional generalized two-parameter partial model. 

In the current study, we tested Yao’s (2012) new-rater model using the basic model: a 

one latent trait and one-parameter IRT-based rater model. We used 10 data sets simulated from 

Yao’s rater model itself to explore parameter recovery and rater distribution issues from the 

scoring process. Markov chain Monte Carlo was used to estimate item, ability, and rater-effect 

parameters based on Yao’s rater model through running BMIRTII software (Yao, 2010). 

Comparison was done between CR-only tests and MC plus CR combined tests in terms of 

examinee ability estimates. 



 

6 

Simulation 

Data Generation 

We chose simulation methods to study the effects on examinees’ ability estimation using 

different rater distribution patterns, and explored the use of Yao’s rater model based on the 

simulated data. The simulated data allowed us to compare the estimated values from the different 

models with the true values (e.g., item parameters, rater parameters, examinee ability) so that 

different models could be evaluated meaningfully. Data were simulated incorporating rater 

effects under the one-parameter logistic (1PL) model using Yao’s program, BMIRTII (Yao, 

2010), which is equivalent to the two-parameter partial credit model with the item-discrimination 

(slope) parameters set to 1.0 for each item. 

The data set created for the simulation was based on a set of item parameters calibrated 

from real assessment data, including 45 MC items and 15 CR items: six items with three 

categories (0, 1, 2), six items with four categories (0, 1, 2, 3), and three items with five categories 

(0, 1, 2, 3, 4). Due to time constraint, we used 10 replications with different seeds for each 

condition. Varying conditions are listed as the following: 

1.   True examinee ability: A simulation of 23,760 instances of examinee ability were 

created by selecting their ability values randomly from a normal (0,1) distribution; 

2.    Rater parameters: Eleven raters were chosen for the simulation with values −1.0, 

−0.7, −0.5, −0.2, −0.1, 0, 0.1, 0.2, 0.5, 0.7, and 1.0, where a larger value indicates a 

more severe rater. The size of the rater effects were chosen based on the analysis of a 

state assessment data. 

Rater Distributions 

The existence of rater effects in performance assessment data is often complicated by the 

distributions of rater severity. Four types of rater distributions were compared (see Table 1). In 

this study, all of an examinee’s responses were scored by the same rater, and the distributions of 

examinees to raters were random.  
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Table 1 

Responses Read by Each Rater in Rater Distributions 1–4 

Distribution 

Rater 

1 2 3 4 5 6 7 8 9 10 11 

1 2,160 2,160 2,160 2,160 2,160 2,160 2,160 2,160 2,160 2,160 2,160 

2 4,000 4,000 4,000 1,470 1,470 1,470 1,470 1,470 1,470 1,470 1,470 

3 1,470 1,470 1,470 1,470 1,470 1,470 1,470 1,470 4,000 4,000 4,000 

4 1,470 1,470 1,470 1,470 4,000 4,000 4,000 1,470 1,470 1,470 1,470 

The following is the description for each rater distribution pattern to address our research 

questions: 

Rater Distribution 1 (D1) 

In this rater distribution pattern, for each replication, each of the 11 raters was randomly 

assigned to read about a group of 2,160 examinees on each of the 15 CR items. The data of this 

rater distribution was analyzed to serve as a baseline. To simplify the rater distribution, we did 

not include multiple raters for one examinee’s responses, although it is feasible. 

Rater Distribution 2 (D2) 

Three lenient raters (−1.0, −0.7, −0.5) rated 4,000 papers each (randomly selected), and 

the other eight raters rated 1,470 papers each (randomly selected). 

Rater Distribution 3 (D3) 

Three harsh raters (0.5, 0.7, 1.0) rated 4,000 papers each (randomly selected), and the 

other eight raters rated 1,470 papers each (randomly selected). 

Rater Distribution 4 (D4) 

Three moderate raters (−0.1, 0, 0.1) rated 4,000 papers each (randomly selected), and the 

other eight raters rated 1,470 papers each (randomly selected). 

Evaluation Criteria 

For each response data for all the rater distribution and replications, two sets of responses 

were created: one set contains both MC and CR items, and the other set contains CR items. 

Markov chain Monte Carlo estimates based on Yao’s rater model for both sets were conducted.  
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It is expected that the results based on the test that contains both MC and CR items are 

better than those with CR items; moreover, many state assessment data contain both MC and CR 

items. However, the Muraki’s rater effect model can only handle data containing CR items.  

Root mean square error (RMSE), absolute mean bias (ABSBIAS), bias, and test 

reliability were computed for all parameters and were used to examine the parameter recovery 

rates.  

Let truef  be the true parameter and let jf  be the estimated parameter from sample j , then 

,)(1= 2

1=
truej

n

j
ff

n
RMSE −∑   (6) 

where n  is the number of replications. Here f can represent ability, rater, or item parameters. 

j

n

j
f

n
f ∑

1=

1= ,  (7) 

where f is the final estimate.  

The bias and absolute mean bias are defined as the following: 

=1

1= ( )
n

j true
j

BIAS f f
n

−∑ , (8) 

=1

1= | ( ) |
n

j true
j

ABSBIAS f f
n

−∑ .  (9) 

Bias and absolute mean bias were used to assess the parameter recovery, and reliability 

was calculated as the square of the correlation between the estimates and the true values in the 

study. The squared differences between the true parameters and estimated parameters and 

squared bias were also calculated and plotted to show results of parameter recovery and 

comparison among different rater distributions. 

Results  

Using Markov chain Monte Carlo method following Yao’s rater model, with 15,000 

iterations and 3,000 as the burn-in item, rater and ability parameters were estimated for each 
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response data set. Large numbers of iterations were chosen to ensure the convergence of the 

Markov chain Monte Carlo chains, as it was not feasible to test convergence for all the 

conditions. However, some Markov chain Monte Carlo chains were examined by plotting a trace 

plot and convergence was achieved. The final item, rater, and ability estimates were obtained by 

averaging over the 10 replications. The priors for each of the parameters in the Markov chain 

Monte Carlo BMIRTII software run were specified in a later section. The means and standard 

deviations of scores of the 10 simulated data are presented in Table 2. Under each rater 

distribution pattern, the means and standard deviations are very close to each other across the 10 

simulated data. 

Table 2 

Total Constructed-Response Score Means and Standard Deviations 

Data 

Distribution 1 Distribution 2 Distribution 3 Distribution 4 

Mean SD Mean SD Mean SD Mean SD 

1 16.40 10.05 18.39 10.31 14.53 9.68 16.34 9.67 

2 16.39 9.94 18.29 10.40 14.51 9.68 16.33 9.71 

3 16.43 10.00 18.43 10.34 14.52 9.69 16.33 9.70 

4 16.39 9.99 18.39 10.33 14.53 9.69 16.32 9.67 

5 16.41 10.03 18.46 10.38 14.56 9.71 16.46 9.76 

6 16.43 10.01 18.44 10.35 14.53 9.70 16.33 9.70 

7 16.41 9.99 18.40 10.33 14.48 9.71 16.32 9.73 

8 16.41 9.98 18.43 10.27 14.54 9.67 16.31 9.72 

9 16.44 9.99 18.42 10.32 14.55 9.75 16.35 9.69 

10 16.41 9.99 18.41 10.35 14.55 9.71 16.38 9.74 

Note. N = 23,760. 

Parameter Recovery With and Without Rater Effects Based on Yao’s Rater Model 

In Tables 3 and 4, the true and estimated CR item parameters and the true and estimated 

rater parameters are presented.  
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Table 3 

Difficulty Parameter Recovery of the Simulated 15 CR Items Based on Yao’s Rater Model 

Item Generating 
Estimated 

(Distribution 1) 
Estimated 

(Distribution 2) 
Estimated 

(Distribution 3) 
Estimated 

(Distribution 4) 
1 0.72 0.72 0.71 0.72 0.72 

2 2.05 2.04 2.04 2.04 2.04 

3 3.11 3.10 3.10 3.12 3.11 

4 2.82 2.81 2.81 2.81 2.82 

5 1.15 1.14 1.13 1.14 1.15 

6 2.23 2.23 2.22 2.22 2.23 

7 -1.06 -1.08 -1.08 -1.08 -1.07 

8 -0.80 -0.80 -0.82 -0.80 -0.80 

9 -1.02 -1.04 -1.05 -1.05 -1.03 

10 -0.15 -0.17 -0.17 -0.17 -0.16 

11 -0.27 -0.28 -0.30 -0.30 -0.29 

12 0.23 0.22 0.21 0.23 0.22 

13 1.51 1.51 1.48 1.49 1.49 

14 -1.68 -1.68 -1.69 -1.68 -1.69 

15 -2.65 -2.64 -2.65 -2.65 -2.67 

Table 4 

Rater Parameter Recovery Based on Yao’s Rater Model 

Item Generating Est.(Distribution 1) Est.(Distribution 2) Est.(Distribution 3) Est.(Distribution 4 ) 
1 -1.00 -1.00 -1.01 -1.00 -1.00 

2 -0.70 -0.70 -0.70 -0.70 -0.70 

3 -0.50 -0.50 -0.49 -0.49 -0.50 

4 -0.20 -0.20 -0.20 -0.20 -0.19 

5 -0.10 -0.09 -0.11 -0.10 -0.10 

6 0.00 0.00 0.00 0.00 0.00 

7 0.10 0.10 0.11 0.10 0.11 

8 0.20 0.20 0.19 0.20 0.21 

9 0.50 0.50 0.50 0.50 0.50 

10 0.70 0.70 0.70 0.70 0.71 

11 1.00 1.00 1.00 1.00 1.00 

Note. Est. = estimated. 
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Overall, rater and item estimates recover very well for models with raters for the four 

distributions for CR-only tests. However, among the four distributions, the squared differences 

between the true parameters and estimated parameters are the smallest for Rater Distribution 1, 

followed by Distribution 4, 3, and 2 (see Figure 1). In terms of rater parameter recovery, Figure 2 

shows that the squared differences between the true rater parameters and estimated parameters 

are the smallest for Distribution 1, indicating that Distribution 1 recover the best, followed by 

Distribution 3, 2, and 4. 

 
Figure 1. Comparison of item difficulty parameter recovery across four rater distributions 

based on Yao’s model. 

 
Figure 2. Comparison of rater parameter recovery across four rater distributions based on 

Yao’s model. 
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In Table 5, results of the item difficulty parameter recovery comparison between with-

rater parameter model and the with-no-rater parameter model are presented. When raters are 

included in the model, the estimated means and standard deviations are very close to the true 

means and standard deviations for all four distributions based on the 10 simulated data, and the 

correlations between the estimated and true scores are similarly close to 1.00. The item 

parameters do not recover well when using the with-no-rater model. The means become very 

small (e.g., drop from 0.41 to -0.60 for the Distribution 1 means) across the four distribution 

patterns. The means for the true and the estimates are quite different; however, the correlations 

between the estimates and the true are really high (> .99) for the four distribution patterns. This 

indicates that item difficulty values shifted away from the true values when they were estimated 

using an IRT model without rater parameters. 

Table 5 

Comparison of Item Difficulty With Raters and With No Raters, Based on Yao’s Rater Model 

CR only Mean SD Mean SD 
Distribution With no rater With rater 

G1 0.41 1.72 0.41 1.72 
1  

EG1 -0.60 1.68 0.41 1.72 
2  

EG1 -0.55 1.71 0.40 1.72 
3  

EG1 -0.54 1.69 0.40 1.72 
4  

EG1 -0.52 1.71 0.41 1.72 

Note. G1 is the generated b-parameter in Table 3; EG1 is the estimate for G1. N = 15. 

Bias of Examinees’ Ability Estimates for CR-Only and MC Plus CR Combined Tests Based 

on Yao’s Rater Model 

Comparisons were also conducted in terms of the squared bias of examinees’ ability 

estimates between the four rater distributions at each ability level between –3.0 and 3.0 (see 

Figures 3 and 4). The results indicate that D4 has the largest bias at the lower end (< –2.0) and 

higher end (> 2.0) for CR-only and MC plus CR combined tests. However, D4 is very similar to 

the other three rater distributions at the middle range (–2.0, 2.0). D3 has slightly larger bias than 

D1 and D2 at the lower end for the CR-only tests. For MC plus CR combined tests, larger bias is 
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observed outside the ability range of (–2.0, 2.0); the bias is very small for the ability range of (-2, 

2). D4 has a larger bias than the other three rater distributions. CR-only tests yield larger bias 

than MC plus CR combined tests. 

Generally speaking, the examinee ability estimates with the no-rater model are very poor 

for CR-only tests. However, when MC plus CR items are combined, the impact of using the 

with-rater model or with-no-rater model is less; ABSBIAS, RMSE, and BIAS values do decrease 

to some extent, but not so much when they are compared to the values from CR-only tests. 

 
Figure 3. Comparison of four rater distributions of CR-only test: 1PL model with rater 

based on Yao’s model. 

 
Figure 4. Comparison of four rater distributions of MC plus CR tests: 1PL model with 

rater based on Yao’s model. 
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Comparison of Mean Estimates of Examinees’ Ability Across the Four Rater Distributions 

Based on Yao’s Model 

To examine the ability estimate difference between the with-rater model and the with-no-

rater model, Markov chain Monte Carlo 2PL parameter estimates for the 10 data sets were 

obtained. Table 6 shows absolute bias, RMSE, and bias values for the ability parameters, with-

rater, and without-rater parameters for data sets with CR-only and MC plus CR combined tests.  

Table 6 shows that absolute bias values are .25 to .76 without rater effects in the model 

but only .19 to .35 when rater effects are included. RMSE values are .14 to .35 without rater 

effects in the model but only .08 to .16 when rater effects are included. Reliability values range 

from .79 to .94 when rater effects were included; however, they range from .01 to .89 without 

rater effects in the model. 

When rater effects are included in the model, in terms of the differences between the four 

rater distributions, Table 6 shows that the absolute bias and RMSE values for D4 are larger than 

those for D1, D2, and D3 for both CR-only and MC plus CR combined tests. For bias, D2 has the 

smallest values as compared with the other three distributions for both CR-only and MC plus CR 

combined tests.  

When rater effects are not included in the model, in terms of the differences of the four 

rater distributions the results show that D1, D2, and D3 produce better ability estimates with 

smaller absolute bias, RMSE, and bias values than those of D4.  

Comparison of Test Reliability Across the Four Rater Distributions 

Reliability was also obtained and compared between the four rater distributions (see 

Table 6). We found that the reliability values for both MC plus CR items combined tests were 

higher than those with CR-only tests for the four rater distributions. In terms of with-rater model, 

for Rater Distributions 1, 2, and 3, the reliability values for CR-only tests are in the range 

between 0.86 and 0.87, which is much higher than that of Rater Distribution 4 (0.79). Similarly, 

for MC plus CR combined tests, the reliability values for Rater Distributions 1, 2, and 3 are 

around 0.94, which is much higher than that of Rater Distribution 4 (0.84). In terms of the with-

no-rater model, the reliability values for the CR-only tests drop significantly, and they range 

from 0.08 to 0.15 for the four rater distributions. For MC plus CR combined tests, the reliability 

values drop from 0.94 to 0.89 for Rater Distributions 1, 2, and 3, and drop from 0.84 to 0.71 for 

Distribution 4. 
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Table 6 

Mean Estimates of Examinee Ability RMSE and Bias Across the Rater Distributions Based on 

Yao’s Rater Model 
 Distribution Abs. bias RMSE Bias Reliability 

CR only With rater     
 1 0.28 0.11 -0.0012 0.87 
 2 0.27 0.10 0.0004 0.88 
 3 0.29 0.11 -0.0015 0.86 
 4 0.35 0.16 -0.0010 0.79 

MC+CR With rater     
 1 0.20 0.08 -0.0014 0.94 
 2 0.19 0.07 -0.0009 0.94 
 3 0.20 0.08 -0.0015 0.94 
 4 0.28 0.14 -0.0015 0.84 

CR only Without rater   
 

 
 1 0.74 0.34 -0.0022 0.08 
 2 0.70 0.33 0.0022 0.15 
 3 0.75 0.34 -0.0022 0.06 
 4 0.76 0.35 -0.0021 0.04 

MC+CR Without rater     
 1 0.26 0.14 -0.0023 0.89 
 2 0.25 0.14 -0.0024 0.89 
 3 0.26 0.14 -0.0023 0.89 
 4 0.42 0.26 -0.0026 0.71 

Note. CR = constructed response; MC = multiple choice; RMSE = root mean squared error; 
Abs. = absolute. 

Generally speaking, the reliability with the no-rater model is really poor for CR-only 

tests. However, when MC plus CR items are combined, the impact of using the with-rater model 

or the with-no-rater model is less; reliability values do decrease to some extent, but not so much 

when they are compared to the values from CR-only tests. 

Model Comparison of Muraki’s and Yao’s Rater Model 

Muraki’s rater effect model. We used PARSCALE to run Muraki’s rater effect model 

for CR-only tests. We selected normal on equally spaced points as the prior distribution. The 

method employed in the calibration phase of PARSCALE is that of random-effects estimation 

through marginal maximum likelihood. The random-effects solution employs the EM method of 

solving the marginal likelihood equations. We set the number of EM cycles to be 100, and the 

number of quadrature points as 30 in the EM and Newton estimation. The scale parameter was 

set at 1.0 in the PARSCALE run. 
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Yao’s rater model. Yao’s rater model run was based on the Markov chain Monte Carlo 

estimation method. The following prior values were set for the Markov chain Monte Carlo 

estimation: 

1. Number of iterations: 15,000 

2. Number of burn-in samples: 3,000 

3. Prior for population: N (0, 1) 

4. Prior for difficulty parameter b: N (0, 1.5) 

5. Prior for rater parameter: N (0, 0.6) 

6. Prior for guessing parameter beta: (100, 400) 

7. The scale parameter: 1.0  

We compared rater parameter recovery and examinees’ ability estimates using Data 1 

only. There are significant differences in terms of the item parameter estimates from the two 

models. The item parameters from Yao’s rater model have much higher correlations with the true 

parameters than that of Muraki’s rater effect model (see Table 7). The item parameters from 

Muraki’s rater effect model have correlations ranging from .84 to .87, with the true parameters. 

In Figure 5, the ability estimates from the two models are plotted and have a strong positive 

linear relationship. In Figure 6, the differences of the ability estimates from the two models are 

plotted, and they are within the range of -1.0 to 1.0.  

Table 7 

Intercorrelations of Estimated Parameter and True Parameters Across the Two Models 

CR only 
Yao’s rater model Muraki’s rater effect model 

Beta1 Beta2 Beta1 Beta2 
Distribution1  

Beta1 1.00  0.86  
Beta2  1.00  0.85 

Distribution2  
Beta1 1.00  0.84  
Beta2  1.00  0.84 

Distribution3  
Beta1 1.00  0.87  
Beta2  1.00  0.84 

Distribution4  
Beta1 1.00  0.86  
Beta2 - 1.00  0.84 

Note. Beta1 is the item difficulty; Beta 2 is the item difficulty threshold. 
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Figure 5. Scatter plot of examinee ability estimates from Yao’s and Muraki’s rater effect 

models (Data 1: Sample N = 1,700). 

 

Figure 6. Differences of examinee ability estimates between Yao’s and Muraki’s rater effect 

models (Data 1: Sample N = 1,700). 

In terms of rater parameter recovery, the rater parameter estimates from Muraki’s rater 

effect model (see Table 8) are very close to the generated rater parameters, which is also similar 

to Yao’s rater parameter estimates (see Table 4). 
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Table 8 

 Rater Parameter Recovery Based on Muraki’s Rater Effect Model 

Rater 
Generating 

Estimated
(Distribution 1) 

Estimated
(Distribution 2) 

Estimated
(Distribution 3) 

Estimated
(Distribution 4) 

rρ  rρ  rρ  rρ  rρ  
1 -1.00 -1.00 -0.97 -0.97 -0.95 
2 -0.70 -0.66 -0.68 -0.69 -0.65 
3 -0.50 -0.48 -0.48 -0.51 -0.52 
4 -0.20 -0.18 -0.18 -0.21 -0.18 
5 -0.10 -0.08 -0.09 -0.08 -0.11 
6 0.00 -0.05 0.04 0.02 0.01 
7 0.10 0.11 0.09 0.08 0.13 
8 0.20 0.20 0.17 0.19 0.21 
9 0.50 0.49 0.47 0.47 0.47 

10 0.70 0.69 0.68 0.69 0.69 
11 1.00 0.96 0.97 0.99 0.91 

Conclusion and Discussion 

Our study used simulated data to examine (a) the difference between Yao’s IRT-based 

rater models with rater effect and with no rater effect, (b) the difference between the precision of 

the ability estimates for tests with CR only and with MC plus CR combined, and (c) the effect of 

four different rater distributions. We also compared Yao’s rater model with Muraki’s rater effect 

model in terms of ability estimates and rater parameters.  

The recovery for the rater, item, and ability parameters for the rater models were 

examined using Yao’s new IRT-based rater model. When rater parameters were included in the 

model, all parameters recover very well; however, when rater parameters were not included in 

the model, the ability estimates were extremely poor, especially for CR-only tests.  

The results from the parameters’ recovery are very similar across the four rater 

distributions. Distribution 1 recovered slightly better than the other three distributions. We also 

found that the effect of rater distributions and rater severity may increase the bias in the 

examinees’ ability estimates to some extent. Our study was an initial attempt to examine those 

moderate raters whose scores tend to give middle-range scores. When moderate raters are 

assigned to read many more papers than other types of extreme raters, larger bias in the 

examinee ability estimates and lower test reliability can result. In our study, moderate raters 

seem to have more impact on examinees’ ability estimate accuracy than the other rater effects, 

such as harshness or leniency, when raters are not assigned randomly during the rating process.  
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In this study, we also compared Yao’s rater model with Muraki’s rater effect model. We 

found that the ability estimates from the two models have a very strong linear relationship, 

although there are some differences that range from -1.0 to 1.0. The examinees’ ability and item 

parameter estimates from Yao’s rater model are better than those from Muraki’s rater effect 

model. However, the rater parameter estimates from both models are very close to each other and 

are close to the generated values as well. The differences between Yao and Muraki’s model 

comparison are typically the differences between Bayesian and maximum likelihood estimation. 

When comparing to maximum likelihood estimation, Bayesian estimation has more precision but 

larger bias, especially for small size (both length of the test and sample). When the sample size is 

large, the likelihood function dominates the posterior function; therefore, the effect of priors are 

small. The sample size (greater than 1,400) and the test length for this study are large, and thus 

the effect of prior should be small.  

It seems that without random distributions of rater severity and ignoring rater effects can 

increase bias in the resulting report of examinees’ final scores and reduce test reliability. 

Moreover, using IRT-based models without rater parameters being taken into account can 

substantially reduce test reliability and increase the bias in the resulting examinee ability 

estimates to some extent, especially when the test is composed of CR-only items. From our 

study, we found that the impact is less when the test is composed of both MC and CR items. 

Results from this simulation study indicate that the distributions of rater severity can have 

some consequences for the accuracy of examinees’ ability estimates and affect test reliability. 

Ignoring rater effects in choosing an analysis model can substantially reduce test reliability and 

increase bias in the resulting ability estimates of examinees, although the impact is less for the 

test that is composed of both MC and CR items. As Hombo et al. (2001) concluded, if an 

unlucky combination of extreme raters and examinees occurs in the scoring design, large bias in 

the examinee ability estimates can result.  

Careful monitoring of the distributions of rater severity seems to be very critical in order 

to obtain high test reliability and minimize examinee ability estimation bias. Additionally, we 

recommend that decisions that are made based on the high-stakes assessment programs need to 

be re-evaluated if raters’ performance is not modeled or checked. The results from the study 

offer a strong inducement for research to continue to develop and refine measurement models 

that correctly incorporate sources of measurement errors that may present in the data. 
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For future study, we will continue to conduct the simulation study using Yao’s rater 

model with more parameters (e.g., discrimination parameters; more than one latent trait) to be 

estimated. Additionally, we can test the two rater models under various conditions of sample size 

(certainly number of examinees; possibly number of items/tasks), and possibly other conditions 

(random vs. nonrandom assignment). In this study, we used a rating design in which each rater 

was completely nested within a subsample of examinees, with each examinee assigned to one 

and only one rater. In order for rater effects models to be useful for placing parameter estimates 

onto the same scale under realistic conditions of small samples and nonrandom assignment, we 

can include some overlap across raters and examinees—some method for linking one subset of 

examinees and raters to other subsets of examinees and raters. Finally, we can use real 

operational data to test the robustness of Yao’s rater model and Muraki’s rater effect model. 
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